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Many proteins and enzymes containing iron chlorin complexes
as the prosthetic group play important roles in biological systems.!
Examples of the iron chlorin-containing enzymes include sulfmyo-
globin,2 HPII catalase,® Neurospora crassa catalase,* and
cytochrome d* and probably myeloperoxidase$’ and spleen green
heme protein.? For some of these enzymes, high-valent oxoiron-
(IV) chlorin r-cation radicals (compound I) have been postulated
to serve as functional intermediates in the catalytic cycles.6:
However, the structures of these chlorin compound I's have not
been elucidated yet. It is therefore very important to prepare
and characterize compound I of iron chlorin by using synthetic
model complexes.

Theoretical and experimental studies of metallochlorin 7-cation
radicals® ! show that metallochlorin complexes are easily oxidized
to yield the corresponding w-cation radicals relative to metal-
loporphyrin complexes and that the chlorin x-cation radicals have
predominantly a, radical state. Further, theoretical studies on
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compound I of N. crassa catalase suggested that compound I
could occupy the a, ground state with a spin distribution and
optical spectra analogous to those of zinc(II) and cobalt(III)
chlorin x-cation radicals.!> Along with this line, more real model
complexes, i.e., oxoferryl chlorin =-cation radicals, have been
required to understand the details of compound I of chlorin-
containing heme enzymes. We wish to report here the success-
ful preparation of an oxoiron(IV) chlorin w-cation radical by
employing sterically hindered iron(III) chlorin, (7,8-dihydro-
5,10,15,20-tetrakis(2,4,6-trimethylphenyl)porphinato)iron-
(I11), [TMCFe!] (1).
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Oxidation of TMCFelll(m-chlorobenzoate),'® 1-mCB, was
performed with one equimolar amount of n-chloroperoxybenzoic
acid (mCPBA) in freshly distilled dichloromethane at —80 °C.
The oxidation of 1-mCB caused a decreased intensity of the Soret
band, a loss of the characteristic band for chlorin complexes at
592 nm, and the appearance of weak broad bands stretching into
the near infrared region to yield a new species, 2 (Figure 1).
These spectral features are characteristic of chlorin w-cation
radicals.!%!5 To confirm the chlorin w-cation radical formation,
?H-NMR measurements of 2, derived from deuterated 1,!” were
carried out in dichloromethane at -80 °C. Three nonequivalent
pyrrole deuterium resonances for 2 were observed at 24,—46, and
—74 ppm (Figure 2a),'® largely upfield shifted from those for 1
at134,118,and 95 ppm. Thespecific features of the three pyrrole
signals for 2 would be attributed to a chlorin w-cation radical in
which substantially different -spin densities are distributed on
the B-carbons of the pyrrole rings,!“!S rather than to the iron-
centered paramagnetic effect. Meta deuterium resonances ex-
hibited a small downfield shift as illustrated in Figure 2b, which
implies small spin densities at the meso carbons of the chlorin
ring.!® In Figure 2, pyrrole and meta deuterium resonances of
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Figure 1. Electronic absorption spectra of 1.8 X 10~* M of TMCFelll-
(mCB), 1-mCB (—), its oxidized product by 1 equiv of mCPBA, 2 (- -),
and the resultant absorption spectrum of reduction by TBAI (-- -) in
dichloromethane at 80 °C.

Fe!lllTMP2® complex are contaminated at around 120 and 20
ppm, respectively. This is due to decomposition of 2 at NMR
concentrations (~10-3 M) even at -80 °C. Unfortunately,
attempts to detect the saturated pvrrole ring deuterium (7,8-
position) signals, which are expected w0 be unusually far downfield
shifted,!213 were unsuccessful at this time possibly due to much
broadening of these signals. The absorption spectrum of 1-mCB
was completely recovered by the reduction of 2 with tetra-n-
butylammonium iodide (TBAI). Careful titration of 2 by TBAI
indicated the production of 1 equiv of I;-, confirmed by the
absorbance at 360 nm (Figure 1).2! This result shows that 2 is
ina two-electron higher oxidation state from the parent complex,
1. To gain further insight into the formulation of 2, triphen-
ylphosphine was added to the dichloromethane solution of 2 at
~80 °C under Ar atmosphere. That the reaction of 2 with
triphenylphosphine afforded 1 equiv of triphenylphosphine oxide,
verified by 3'P-NMR spectroscopy,2? shows the presence of the
oxoiron ligand in 2. ESR spectrum of 2 was found to be silent
in dichloromethane at 77 K. It is therefore concluded that the
formulation of 2 is the TMCFe!V==0 =-cation radical.

While 2 was relatively stable at —80 °C under UV concen-
trations (~10-5 M), raising the temperature above —80 °C
facilitated the conversion of 2 to the Fe!'TMP complex, consistent
with the formulation of 2 to be two-electron-oxidized from 1.2

In order toexamine the reactivity of 2, 1000 equiv of norbornene
was added to a dichloromethane solution of 2 at —-80 °C. Upon
addition of norbornene to the r-radical solution, the absorption
spectrum of 2 showed no changes within 3 h.2¢ On the contrary,
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Figure 2. Deuterium NMR spectra of the selectively deuterated oxidation
products, 2, in dichloromethane at -80 °C: (a) saturated pyrrole ring-
dr—pyrrole-dg and (b) meta ds complexes. The peaks labeled X are due
to the Fe'''TMP complex.
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the corresponding porphyrin w-cation radical reacted with
norbornene even at -80 °C to give norbornene oxide in 3 h.2’
These findings indicate that the chlorin =-cation radical, 2, has
lower reactivity toward olefin than the corresponding porphyrin
w-cation radical.

Meso-substituted iron porphyrin =-cation radicals are of the
ay type,142627 while metallochlorin «-cation radicals have
preferentially the a, (a;, type) radical state.!%!5 Further, the
oxidation potentials of TMCFe!!ICl, 1-Cl are 200-300 mV lower
than those for the corresponding porphyrin complex, TMPFelll-
Cl (the first and second oxidation potentials are +0.89 and +1.17
V (vs SCE) for 1-Cl and +1.09 and +1.48 V for the porphyrin,
respectively).?® It is therefore likely that the difference in
reactivity between 2 and the oxoferryl porphyrin #-cation radical
could berationalized by their radical orbital types and/or oxidation
potentials.

In conclusion, the oxoiron(IV) chlorin wm-cation radical has
been successfully prepared and the chlorin #-cation radical showed
lower reactivity than the corresponding porphyrin »-cation radical.
The chlorin complex reported here is the first example of a
synthetic model of the putative reaction intermediates (compound
I) of chlorin-containing heme enzymes. Full characterization
and detailed study of reactivities of the chlorin x-cation radical
are under investigation.
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